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Why Is the Delocalization Energy Negative and 

Why Is It Proportional to the Number of TT Electrons? 
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Abstract: The delocalization energy of conjugated hydrocarbons is almost always negative and proportional to 
the number of TT electrons. A theoretical deduction is given for these properties and a physical interpretation is 
obtained using localized TT orbitals. The delocalization energy is found to be negative because, with rare excep­
tions, each localized TT orbital is still more delocalized than the ethylene x orbital, a phenomenon termed "local de-
localization." The proportionality to the number of v electrons obtains because most localized TT orbitals have 
nearly the same energy which, moreover, is nearly molecule independent among similar molecules. The latter 
observation motivates the definition of a new set of localized molecular orbitals, called homogeneous localized or­
bitals, whose orbital energies are exactly equal. It is shown that, in conjugated hydrocarbons, homogeneous lo­
calized orbitals closely resemble maximally localized TT orbitals. 

1. The Delocalization Energy and Its Two 
Basic Properties 

Systems of conjugated double bonds are especially 
stable and it is generally accepted that this is due to 
the delocalization of TT electrons. In the Hiickel or 
Wheland approximations,1 this stability is related to 
the sum of the occupied TT orbital energies. The fact 
that this sum is less than the sum of the orbital energies 
of an equal number of ethylenic TT orbitals is associated 
with "resonance stabilization." The delocalization 
energy is defined to be the difference between these 
energies 

DE = Tgt*t Ne 

where N is the number of TT electrons, n, a, . . . are the 
occupied IT orbital energies, and e is the TT orbital energy 
of ethylene. The summation in eq 1 includes only the 
occupied orbitals with occupation numbers 

1, if orbital / is singly occupied 
gi = or 

2, if orbital / is doubly occupied 

The relation between DE and experimental resonance 
energies is discussed in various texts. 

The delocalization energy has two fundamental prop­
erties. First, it is almost always negative, i.e. 

tion 4 is less widely appreciated, although it was noted 
by Scherr.2 Reasons for its validity are also unclear. 
The object of this paper is to elucidate the reasons for 
and the significance of the relations in eq 3 and 4. 

2. Validity of the Two Basic Properties in (3) and (4) 

General Formula. The theoretical derivation of 
the empirically observed relations 3 and 4 will be based 
on the orbital energy for a TT electron system, namely 

€t = Coulomb integral + xt X resonance integral (5) 

where 

A • *i- WiKl + Sm1) (6) 
(American ' ! 'v u v ' 

The m* are the eigenvalues of the topological matrix3 of 
the system and S is the nearest neighbor overlap in­
tegral: 5 = 0 for Hiickel orbitals; S « 0.25 for Whe­
land orbitals. When S = 0 we shall call the xt "Hiickel 
numbers" and give them the symbol mt. When S ^ O , 
the Xt will be referred to as "Wheland numbers." For 
ethylene one finds 

m = 1 (7) 

x = 0.8 (8) 

The delocalization energy of eq 1 can now be written 
DE = (de) XNX resonance integral (9) 

(2) 

DE < 0 (3) 

and second, it is often roughly proportional to the 
number of TT electrons, i.e. 

DE ~ constant X N (4) 

Equation 3 expresses resonance stabilization. Al­
though it is well known, its origin has not been fully 
understood, for in all conjugated systems one finds that 
d < e, for the lowest occupied orbital, and et > e, for 
the highest occupied orbital. It is therefore not clear 
why the sum over all occupied orbital energies should 
always be less than the sum of an equal number of 
ethylenic orbital energies. Intuitively, it seems that 
this has something to do with delocalization. Equa-

(1) R. Daudel, R. Lefebvre, and C. Moser, "Quantum Chemistry," 
Interscience, New York, N. Y., 1959, Chapter 4. 

where (de), the "delocalization energy per electron" in 
units of the resonance integral, is given by 

(de) = m — m = m — 1 

for Hiickel orbitals and 

(de) = x — x = x — 0.8 

for Wheland orbitals. The quantities 

N-^gitrii m 

and 

x = N-1Y^g iXi 

(10) 

(H) 

(12) 

(13) 

(2) C. W. Scherr, J. Chem. Phys., 21, 1413 (1953); reprinted in 
"Free-Electron Theory of Conjugated Molecules," Wiley, New York, 
N. Y., 1964. 

(3) K. Ruedenberg, / . Chem. Phys., 34, 1884(1961); reprinted in 
text cited in ref 2. 
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Figure 1. Average Hiickel and Wheland numbers in linear poly­
enes. 

are the average Hiickel and Wheland numbers, respec­
tively, of the molecule in question. 

We shall now show that the Hiickel and Wheland 
numbers each have the following properties, which are 
equivalent to the basic properties of the delocalization 
energy: (1) they are usually larger than the ethylene 
numbers, so that DE is usually negative (the resonance 
integral being negative); (2) they are nearly molecule 
independent within certain classes of conjugated mole­
cules. 

In order to readily assess the behavior of the Whe­
land numbers, we shall make some judicious approxi­
mations. The denominator in eq 6 can be rewritten 

(1 + mtSrl = (1 + VsS)-2O + 3S- mtS)/ 

(1 - 5») (14) 

with 

6 = (V2 - mt)SK\ + V2S) (15) 

Moreover, it can be shown that4 

- 3 < mt < 3 (16) 

for all -K systems, and in most systems the mt for oc­
cupied orbitals are positive. Consequently 

S2 < 9/121 = 0.074 (17) 

and the expansion of (1 — 52) -1 in powers of 52 is 
rapidly convergent. A good approximation is ob­
tained by neglecting 52 altogether. Thereby, insertion 
of eq 14 into eq 6 yields the expression 

* = [(I + 3S)m - Sw2]/(1 + V2S)2 (18) 

= 0.9256m - 0.1322m2 (18') 

where 

w2 = N-^gtmr (19) 
i 

is the average of the squares of the Hiickel numbers. 

(4) K. Ruedenberg, / . Chem. Phys., 22, 1878 (1954); reprinted in 
text cited in ref 2. 

We will now calculate the Hiickel and Wheland num­
bers for some important classes of conjugated hydro­
carbons and use our results to verify the two basic 
properties. 

Linear Polyenes. Here6 

mt = 2 cos {iirl(N + I)] (20) 

so that m and m2 have the analytic forms (all subsequent 
summations are readily obtained using the identity 
1 + 2S„ = 1

M cos na = [sin (M + V2)W(Sm 1/20)]) 

Nm = 2 cos [TT(2 - gM)!2(N + 1)]/ 

sin [ir/2(N + I)] - 2 (21) 

and 

Nm2 = 2(N - 1) (22) 

respectively. The integer M is defined as 

N/2, even N 
M = or (23) 

(N + l)/2, odd N 

Values of m, m2, and x are plotted vs. N in Figure 1. 
Except for allyl (N = 3), all average Hiickel and Whe­
land numbers are larger than ethylene's (N = 2), so all 
systems having N > 4 will have a negative delocaliza­
tion energy. Moreover, after the first few systems the 
results are independent of N. This can be demon­
strated explicitly by taking the limits N » 1, MjN -* V2 

limm = 4/TT = 1.27 (24) 

lim m2 = 2 (25) 

and hence 

lim x = 0.92 (26) 

Alternatively, one can get the same results by averaging 
eq20 

m = (21%) C 2 cos 8 dd = 4/TT = 1.273 (27) 

m2 = (2/TT) C4 cos2 d dd = 2 (28) 

The integration range 0 < 9 < ir/2 is chosen because 
the mt for occupied orbitals in linear polyenes are non-
negative. 

Cyclic Polyenes. The orbital energies are given 
by5 

mt = 2 cos i2ir/N i = 0, 1, 2, . . . (29) 

and, whereas m0 is nondegenerate, all other mt (i > 1) 
are doubly degenerate. Consequently, there are four 
types of cyclic polyenes depending upon the occupation 
of the highest filled orbital. The four types can be dis­
tinguished by the index 

j = - 1 , 0 , 1,2 (30) 

in the formula 

N=A1X+] (31) 

where N denotes the number of electrons, n denotes the 
index of the highest filled orbital, and the occupation 

(5) C. A. Coulson, Proc. Cambridge Phil. Soc, 46, 202 (1950); C. A. 
Coulson and A. Streitweiser, "Dictionary of T-Electron Calculations," 
Pergamon Press, New York, N. Y., 1965. 
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Figure 2. Average Hiickel and Wheland numbers in cyclic poly­
enes. 

number of this orbital is given by 

&. = (2 + j) (32) 

Summing over the occupied orbitals, one obtains 

Nm = 4 cos [>(1 - j 12)1 N]liin (r/N) -

(2 - j)m, (33) 

and 

Nm2 = - 4 sin [2TT(1 - j/2)/N]/sm (2ir/N) + 

8(M + 1A) - (2 ~ 7 > V (34) 

Plots of m2 and the average Hiickel and Wheland 
numbers in Figure 2 are similar to those in Figure 1. 
Beyond the first few members our assertions about the 
Hiickel and Wheland numbers hold here also. The 
limiting cases are again described by eq 24-28. It is 
interesting that the 4/̂  + 2 systems approach the limits 
from above and all others approach from below. 

Linear Polyacenes. The analysis is more compli­
cated here, since3 

m0 = 1 

m, = V2{1 + [9 + 8 cos (iw/(v + I))]1- , 

/ = 1, 2, 

I1A 

(35) 

mt' = 1IiI-I + [9 + 8 cos (iTl(v + l))]1/*} 

/ = 1,2, . . . v 

where 

JV = Av + 2 and v = number of rings (36) 

For OT2, one finds straightforwardly that 

/Vm2 = IO + 2 (37) 

3 -
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Figure 3. Average Hiickel and Wheland numbers in catacondensed 
hydrocarbons. 

by summing over the occupied orbitals. For m one 
obtains 

v 

Nm = 2m0 + 2 £ ( 9 + 8 cos [iirl(v + I)])"* 
i = i 

f+i 

= 2 £ ( 9 + 8 cos [iwl(v + I)])1/. 
T = I 

y + 1 

Nm = 2E{1 + 1 6 C O S 2 C Z T T ^ + l)]}1 

i = i 

which can be fairly closely approximated by 
x + l 

Nm = 2E{1 + 3 cos \itv!2(v + 1)]} 

(38) 

(39) 

Execution of the summation yields 

Nm = 2(v + 1) + 3{cot [ir/A(p + I)] - 1} (40) 

whence, by virtue of eq 37 

Nm = V2TV - 2 + 3 cot (TT/TV + 2) (41) 

Results using eq 37 and 41 are shown in Figure 3. The 
values of m and x are substantially larger than the 
ethylenic values. Since /V has at least the value 6 and 
increases rapidly with the number of rings, m and x 
approach the limiting values quickly. The latter are 

l imw = V2 + 3/TT = 1.455 (42) 

lim m2 = 2.5 (43) 

l im* = 1.016 (44) 

England, Ruedenberg / Why is the Delocalization Energy Negative9. 
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The limiting value of eq 42 is also obtained by the 
integral averaging 

/ •TT/2 

Nm = [4(j- + I)Iw] d0(l + 3 cos 9) 
Jo 

lim m = TT-1 I d(9(l + 3 cos d) = 1A + 3/TT 

Condensed Benzenoid Hydrocarbons. It is known4 

that in systems with condensed rings, one has 

mt - 3 cos ki (45) 

where kt is determined from an eigenvalue problem. 
Hence we cannot employ summation techniques to ob­
tain the average Hiickel and Wheland numbers. This 
being the case, we shall use a simple procedure based on 
the ratio of joint atoms (common to more than one 
ring) to nonjoint atoms. The w and m*- for nonjoints 
are assumed to be given by eq 27 and 28, while the 
values 

/ • j r /2 

m = (2/V) I 3 cos e dd = 6/TT = 1.91 (46) 

/ • i r /2 

m2 = (2/it) 9 cos2 6 dd = 4.5 (47) 
Jo 

are used for joint atoms. The latter are obtained by 
averaging eq 45. Thus, if N is the total number of 
atoms and J is the number of joint atoms, we assume 
that, approximately 

OT = (6JT)(J/N) + (4/TrX(JV - J)IN] = 

(4/rr) + (2/7T)(JIN) (48) 

OT2 = (91I)(JIN) + 2[(JV - J)IN] = 2 + 2.5(JJN) (49) 

Substitution in eq 18' yields 

* = 0.9141 + 0.2588(//JV) (50) 

which shows a relatively weak dependence on JV. For 
example, in the case of catacondensed systems (no ring 
is common to more than two other rings) one has 

j = (N - 6)/2 (cata systems) (51) 

and thus 

W = 1.59 - 1.91/JV (52) 

OT2 = 3.35 - 6.50/JV (53) 

x = 1.055 - 0.7763//V (54) 

The quick approach to limiting m and x values is shown 
in Figure 3. Moreover, the behavior is similar to that 
shown for the linear polyacenes. Since the latter are 
special types of cata systems, this provides evidence for 
the validity of our approximations. 

Exact and Approximate Hiickel and Wheland Num­
bers. Tables I—HI compare the approximate Hiickel 
and Wheland numbers with exact values. Since our 
polyene m are exact, Table I shows only the polyene x. 
The row labels are the number of ir electrons. Agree­
ment between exact and approximate values is typically 
excellent. Table II lists the results for catacondensed 
molecules. The first seven rows describe linear poly­
acenes, and we see that their m are more accurate than 
those of the other cata systems. However, the x are 
little affected by the different averaging schemes em-
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Table I. Average Wheland Numbers in Polyenes 

—Linear • Cyclic-
N 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Exact" 

0.8021 
0.6989 
0.8463 
0.8062 
0.8673 
0.8460 
0.8794 
0.8663 
0.8873 
0.8784 
0.8928 
0.8863 
0.8969 
0.8920 
0.9000 
0.8962 

Approx 

0.80 
0.70 
0.85 
0.81 
0.86 
0.85 
0.88 
0.87 
0.88 
0.88 
0.89 
0.89 
0.89 
0.89 
0.90 
0.90 

Exact" 

0.4502 
0.6695 
0.8574 
0.9811 
0.8560 
0.8589 
0.8983 
0.9448 
0.8987 
0.8950 
0.9107 
0.9347 
0.9109 
0.9077 
0.9159 
0.9305 

Appro 

0.54 
0.67 
0.85 
0.98 
0.77 
0.87 
0.90 
0.94 
0.90 
0.90 
0.91 
0.93 
0.91 
0.91 
0.91 
0.93 

" Calculated in this laboratory with S = 0.2468. 

Table II. Average Hiickel and Wheland Numbers in 
Catacondensed Hydrocarbons 

•m • . • x-

Molecule 

Naphthalene 
Anthracene 
Naphthacene 
Pentacene 
Hexacene 
Heptacene 
Octacene 
Phenanthrene 
Chrysene 
3.4-Benzo-

phenanthrene 
Benzanthracene 
Picene 
Pentaphene 
3,4:5,6-Dibenzo-

phenanthrene 
1,2:5,6-Dibenz-

anthracene 
1,2:7,8-Dibenz-

anthracene 

Exact0 

1.3683 
1.3795 
1.3850 
1.3884 
1.3905 
1.3923 
1.3935 
1.3892 
1.3994 
1.3993 

1.3945 
1.4065 
1.3983 
1.4062 

1.4037 

1.4027 

Approx 

1.3308 
1.3429 
1.3851 
1.3956 
1.4025 
1.4051 
1.4109 
1.45 
1.48 
1.48 

1.48 
1.50 
1.50 
1.50 

1.50 

1.50 

Exact6 

0.9898 
0.9898 
0.9891 
0.9884 
0.9879 
0.9875 
0.9872 
0.9989 
1.0029 
1.0027 

0.9982 
1.0057 
0.9980 
1.0019« 

1.0030 

0.9884 

Appro 

0.95 
0.95 
0.99 
0.99 
0,99 
1.00 
1.00 
0.98 
1.01 
1.01 

1.01 
1.01 
1.01 
1.01 

1.01 

1.01 

o Taken from "Dictionary of Values of Molecular Constants 
(Wave Mechanical Methods)," C. A. Coulson and R. Daudel, 
Ed. b Calculated in this laboratory with S = 0.2468. 

Table III. Average Hiickel and Wheland Numbers in 
Pericondensed Hydrocarbons 

. fn , . x 
Molecule Exact" Approx Exact-* Approx 

Triphenylene 
1,2:3,4-Dibenz-

anthracene 
Pyrene 
Perylene 
1,2-Benzpyrene 
4,5-Benzpyrene 
Anthanthrene 
1.12- Benzoperylene 
Coronene 
Ovalene 

1.4041 
1.4065 

1.4066 
1.4123 
1.41116 

1.4168s 

1.4206« 
1.4284 
1.4405 
1.4530fc 

1.47 
1.49 

1.49 
1.49 
1.52 
1.52 
1.54 
1.54 
1.58 
1.63 

1.0072 
1.0057 

1,0044 
1.0065 
1.0055 
1.0073» 
1.0077 
1.0115 
1.0174 
1.02146 

1.01 
1.01 

1.01 
1.01 
1.02 
1.02 
1.03 
1.03 
1.04 
1.07 

" Table II, footnote a. b Taken from ref 5 of text. c Taken 
from "Supplemental Tables of Molecular Orbital Calculations," 
A. Streitweiser and J. Brauman, Ed., Pergamon Press, New York, 
N. Y., 1965. d Calculated in this laboratory with S = 0.2468. 
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geneously localized orbitals. Solid lines are positive contours, dashed lines are negative contours, and dotted lines show the nodes. 

ployed. Finally, in Table III we show some results for 
pericondensed systems. The first group contains 
molecules in which one ring fuses with no more than 
four neighboring rings, and the second group lists some 
molecules with even greater ring sharing. 

Note that almost all of the Hiickel and Wheland 
numbers in these tables are greater than the ethylene 
values (see eq 7 and 8) and in each class are approxi­
mately independent of N. This explicitly illustrates 
the two basic properties of the derealization energy and 
the validity of our demonstration. Note also that the 
approximations closely reproduce the observed trends 
in the derealization energy per IT electron. For ex­
ample, the stabilization is largest for the peri systems, 
somewhat less for the cata, and, except for benzene, 
least of all for the polyenes. 

3. Derealization Energy Explained by 
Local Derealization 

Localized % Orbitals in Conjugated Hydrocarbons. 
Considerable freedom exists regarding the choice of 
the orthogonal molecular orbitals (MO's) in a mole­
cule. This freedom can be exploited to choose the 
MO's in localized form (LMO's).9 In recent applica-

(6) C. Edmiston and K. Ruedenberg, Rev. Mod. Phys., 35,457 (1963). 

tions78 of this technique we have shown that localiza­
tion of the canonical Hiickel or Wheland MO's of an 
aromatic system provides a set of LMO's with inter­
esting properties. As examples of our results, contour 
maps of the ir LMO's of anthracene and naphthalene 
are shown in Figures 4A and 4B, respectively. Four 
different types of LMO's are seen to occur. In fact, 
these four localized bond types are essentially the only 
ones we found in a detailed examination of 18 benzenoid 
hydrocarbons.7-8 

Figure 5 shows some examples of Wheland -K L M O ' S 
for the other classes of molecules we have been consid­
ering. Pairs of equivalent LMO's occur in cyclo-
butadiene and butadiene. One member of each set is 
shown in Figures 5A and 5B, respectively. Figure 5C 
shows one member of a possible set of three equivalent 
Kekule-type LMO's in benzene, while Figure 5 D 
shows one member of a similar set of four equivalent 
cyclooctatetraene LMO's. 

In sharp contrast with the canonical ir MO's, the 
LMO's have two obvious characteristics: (1) they are all 
about the same size, and (2) with the exception of cyclo-
butadiene (Figure 5A), positive contours extend at least 

(7) W. England, L. S. Salmon, and K. Ruedenberg, Fortschr. Chem. 
Forsch., 23, 31 (1971). 

(8) W. England and K. Ruedenberg, Theor. Chim. Acta, 22, 196 
(1971). 
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Figure 5. Localized molecular orbitals in butadiene, cyclobuta-
diene, benzene, and cyclooctatetraene. Solid lines are positive 
contours, dashed lines are negative contours, and dotted lines show 
the nodes. 

over three atoms. (On Figures 4 and 5 the largest 
orbital lobes are drawn as the positive contours.) Now, 
it is well known that the energy of any individual TT-
electron orbital decreases (becomes more negative) 
when the size of its largest lobe increases, a fact which is 
mainly due to the decrease in the kinetic energy.9 

Accordingly we find the following behavior for the 
LMO orbital energies. (1) For a given class of con­
jugated hydrocarbons, most localized orbitals have 
nearly the same value of the orbital energy, and (2) 
these orbital energies almost always lie lower than 
ethylene's orbital energy. This leads to simple phys­
ical interpretations of the two basic properties of the 
delocalization energy. 

Local Delocalization and the Physical Interpretation 
of the Delocalization Energy. The sum of the orbital 
energies is invariant against orthogonal orbital trans­
formations, i.e. 

Ysgiti = JlgiVi (55) 
i i 

where the et are the canonical Huckel-Wheland orbital 
energies and the t)t are the localized orbital energies. 
Hence, the delocalization energy of eq 1 can be ex­
pressed as 

DE = EgiVt ~ Ne (56) 
i 

Now, the positive contours of the ethylene % orbital are 
perfectly confined to two atoms. Hence, whenever the 
LMO positive contours extend over more than two 

(9) The statement of this undisputable fact is often countered with 
the question: but what about the virial theorem, which states that the 
kinetic energy increases when the total energy decreases ? There are 
two reasons why the virial theorem is not satisfied for the orbitals dis­
cussed here. First, in exact calculations the virial theorem holds only 
for the total energy, but not for individual orbitals, and not even ap­
proximately for valence orbitals. Secondly, in minimal basis set cal­
culations with fixed orbital exponents the virial theorem is not even 
satisfied for the total energy. For example, in the classical Heitler-
London calculation, Hs has a lower energy than 2H, because the kinetic 
energy has dropped whereas the potential energy is raised. The cal­
culations discussed here are quite analogous in character. Nonethe­
less, this type of calculation can and does give useful results. For more 
details on this question (which was raised by a referee), see M. J. Fein-
berg and K. Ruedenberg,/. Chem.Phys,, 54,1495(1971). 
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atoms, the r\i will be more negative than e because of a 
greater contribution from the resonance integral (the 
contribution from the Coulomb integral is unchanged). 
It is now apparent why the delocalization energy is al­
most always negative. Every one of the maximally 
localized w orbitals is still more delocalized than the 
ethylene TT orbital. In other words, resonance stabiliza­
tion of conjugated systems is due to the "local de-
localization" of the ir LMO's onto more than two 
atoms. We can see from cyclobutadiene in Figure 5A 
that when the LMO's extend only over two atoms, the 
resonance energy is zero (Huckel case) or positive 
(Wheland case). 

4. Homogeneous Localization and the Proportionality 
of the Delocalization Energy to the Number 
of 7T Electrons 

We mentioned in the preceding section that the max­
imally localized orbitals in these molecules have nearly 
the same energy. In view of this, it is natural to define 
a new type of localized orbital in a conjugated system 
by the additional constraint that all localized IT orbitals 
have the same orbital energy. Of course, these orbitals 
may not be as localized as the maximally localized ones, 
but it is expected that the two types will not differ too 
much from each other. We choose the name homo­
geneous localization for this method of constructing 
localized orbitals. 

It is apparent that the orbital energy of each of the 
homogeneously localized molecular orbitals (HLMO's) 
in a molecule will be the average 

v = N-1ZgSt (57) 
i 

By virtue of eq 5, 12,'and 13, this becomes 

rj = Coulomb integral + y X 

resonance integral (58) 

where y is the average Huckel or Wheland number for 
the molecule in question. We have already seen that as 
the number of ir electrons increases, the y rapidly be­
come constant in many classes of conjugated hydro­
carbons. Hence, if we rewrite the delocalization 
energy as 

DE = (rj - e)N 
(59) 

- (y ~ y)N X resonance integral 

where y is the Huckel or Wheland number of ethylene, 
we see that 

(de)0 = y - y (60) 

is a "standard local delocalization energy" (in units of 
the resonance integral) and is approximately molecule 
independent for many classes of conjugated hydro­
carbons. Since eq 59 becomes 

DE = (de)0 XNX resonance integral (61) 

this makes it intuitively clear why the delocalization 
energy is proportional to the number of -K electrons. 
The negative value of (de)o expresses the local delocal­
ization of the HLMO's as compared with the two-center 
ethylene MO. 

Examples of Homogeneous Localized Orbitals. The 
contour diagrams of the five naphthalene HLMO's are 

\, 1973 
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shown in Figure 4C. They differ only slightly from the 
optimal LMO's in Figure 4B. Since the latter are 
defined as maximizing the localization sum6 

L(<j>) = Zf V1JdVrttKlXXD/m (62) 

it is of interest to compare the numerical values of this 
criterion for the optimal LMO's, the homogeneous 
LMO's, and the canonical MO's. Using the naph­
thalene Wheland orbitals we find (in atomic units) 

!.(canonical) = 3.5623 

!,(homogeneous) = 5.3759 

!,(optimal) = 5.4634 

showing that the HLMO's are very close to the LMO's 
by this criterion. Furthermore, as will always be the 
case when all LMO's are equivalent orbitals, each 

LMO shown in Figure 5 is simultaneously a HLMO. 
In view of these results, it can be safely predicted that it 
is possible to form conjugated hydrocarbon HLMO's 
that will be very similar to the optimal LMO's. One 
would also expect this to be true in simple crystals. 

It should be appreciated that there are many sets of 
MO's with the property that all occupied MO's in the 
set have the same orbital energy. This is so because 
the equality of the orbital energies introduces fewer 
conditions than are necessary to specify an orthogonal 
transformation among all occupied MO's. The HL­
MO's should therefore be defined as those occupied 
MO's for which the localization criterion of eq 62 is 
maximized under the side condition that all orbital 
energies are equal. Their determination is thus more 
intricate than that of the usual LMO's. 
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